

Nadler Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York-Basel, 1978. An introduction, Marcel Dekker, Inc., New York, 1992. Macías, Retractions and hyperspaces, Glas. Nadler, Jr., On hereditarily decomposable homogeneous continua, Topology Proc. 2, Academic Press, New York, London, 1968. Kelley, Hyperspaces of a continuum, Trans. Katsuura, Pseudocontraction and homotopy of the sin (1/x) curve, Proc. Fundamentals and recent advances, Marcel Dekker, Inc., New York, 1999. Illanes, Pseudo-homotopies of the pseudo-arc, Comment. Illanes, Hiperespacios de continuos, Sociedad Dk̨ebski, Pseudo-contractibility of the sin (1/x)-curve, Houston J. Koyama, On the symmetric hyperspace of the circle, Topology Appl. Illanes, N-sequences and contractibility in hyperspaces, Houston J. Castañeda, A unicoherent continuum whose second symmetric product is not unicoherent, Topology Proc. Orozco-Zitli, General properties on pseudo-contractibility, Topology Appl. Bellamy, A null pseudohomotopic map onto a pseudo-arc, Topology Proc. As a consequence we have that the existence of an R i-set in a continuum X implies non(pseudo)-contractibility of some hyperspaces.Ģ010 Mathematics Subject Classification. Also we prove that if a continuum X contains an R i-set then it is not pseudo-contractible. 50000, Toluca, Estado de México,Į-mail: this paper we discuss the notions of pseudo-contractibility and weak contractibility on hyperspaces of (Hausdorff) continua. R i-SETS, PSEUDO-CONTRACTIBILITY AND WEAK CONTRACTIBILITY ON HYPERSPACES OF CONTINUA Félix Capulín, Leonardo Juárez-Villa and Fernando Orozco-Zitliįacultad de Ciencias, Instituto Literario No. Ri-sets, pseudo-contractibility and weak contractibility on hyperspaces of continua Glasnik Matematicki, Vol.
